Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug.
نویسندگان
چکیده
A simple and efficient approach for concentration of charged molecules in microfluidic devices is described. The functional component of the system is a hydrogel microplug photopolymerized within the main channel of a microfluidic device. When an appropriately biased voltage is applied across the hydrogel, charged analyte molecules move from the source well toward the hydrogel. Transport of the analyte through the hydrogel is slow compared to its velocity in the microfluidic channel, however, and therefore it concentrates at the hydrogel/solution interface. For an uncharged hydrogel, a bias of 100 V leads to a approximately 500-fold enrichment of the DNA concentration within 150 s, while the same conditions result in an enrichment of only 50-fold for fluorescein. Somewhat lower enrichment factors are observed when a negatively charged hydrogel is used. A qualitative model is proposed to account for the observed behavior.
منابع مشابه
Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
The electrokinetics and hydrodynamics in a hybrid microfluidic/nanofluidic pore network configuration and its effect on the concentration enrichment of charged analytes are described. A hydrogel microplug, photopolymerized in a microfluidic channel, with negative surface charge serves as a nanoporous membrane and dictates the electrokinetic behavior within the adjoining microchannel compartment...
متن کاملThe influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units.
The performance of nanoporous hydrogel microplugs with varying surface charge density is described in concentrating charged analytes electrokinetically in a microfluidic device. A neutral hydrogel plug with a mean pore size smaller than the size of charged analytes acts as a simple size-exclusion membrane. The presence of fixed charges on the backbone of a nanoporous hydrogel creates ion-permse...
متن کاملElectrokinetic trapping and concentration enrichment of DNA in a microfluidic channel.
We report a simple and efficient method for enriching the concentration of charged analytes within microfluidic channels. The method relies on exerting spatial control over the electrokinetic velocity of an analyte. Specifically, the electroosmotic (eo) velocity of the buffer solution in one region of the microfluidic system opposes the electrophoretic (ep) velocity of the analyte in the other ...
متن کاملSelective DNA screening in microfluidic channels by electrophoresis through hydrogel matrices
Advances in microchip design, coupled with novel bioassays have led to advances in the field of genetic diagnostics. Microfluidic devices offer analytical advantages for samples of low concentration and small sample volume due to directed, efficient mass transport of analytes through microfluidic networks. Although significant advances have been made in genetic assays using micro-arrays, there ...
متن کاملMonodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
PEG-based hydrogels have become widely used as drug delivery and tissue scaffolding materials. Common among PEG hydrogel-forming polymers are photopolymerizable acrylates such as polyethylene glycol diacrylate (PEGDA). Microfluidics and microfabrication technologies have recently enabled the miniaturization of PEGDA structures, thus enabling many possible applications for nano- and micro- struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2005